

Journal of Organometallic Chemistry 541 (1997) 269-276

Umsetzungen mit dem Zintl-Ion Sn_9^{4-} Kristallstrukturanalysen von $[(\eta^5-C_5H_5)(\text{CO})_2\text{Fe}]_3\text{Sn-OH}$ und $\text{K}_2[\text{K}-(2,2,2\text{-crypt})]_2\text{Sn}_2\text{Te} \cdot 1\text{en}^{-1}$. Synthese des Anions $\text{Sn}_2\text{Te}_3^{2--2}$

Thomas F. Fässler *, Uwe Schütz

Laboratorium für Anorganische Chemie der Eidgenössischen Technischen Hochschule Zürich, Universitätstr. 6, CH-8092 Zürich, Switzerland

Eingegangen 2 Januar 1997; hergesehen 9 Januar 1997

Abstract

The Zintl anion Sn_{9}^{4-} reacts with $[\text{Cp}(\text{CO})_2\text{Fe}]\text{Sn}$ to form $[\text{Cp}(\text{CO})_2\text{Fe}]_3\text{Sn}-OH$ (1), which has been fully characterized. X-ray analysis shows that 1 is monomer and that the hydroxo-group is singly coordinated with an Sn-O distance of 2.017(7) Å. NMR-spectro-scopic studies show a fast exchange of the hydrogen atoms of the hydroxo-group. Reaction of Sn_{9}^{4-} with elemental tellurium leads to the formation of the anion $[\text{Te}_2\text{Sn}(\mu_2\text{-Te})_2\text{Sn}\text{Te}_2]^{4-}$ (2a) and by addition of Me₃NO to $[\text{Sn}(\mu_2\text{-Te})_3\text{Sn}]^{2-}$ (3a). X-ray analysis of K₂[K-(2,2,2-crypt)]_2\text{Sn}_2\text{Te}_6 \cdot \text{len shows, that 2a has a diborane-type structure. All compounds have been characterized by ¹H-, ¹³C-, ¹¹⁹Sn-, and ¹²⁵Te-NMR spectroscopy.

Zusammenfassung

Das Zintl-Anion Sn₉⁴⁻ reagiert mit $[Cp(CO)_2Fe]Sn zu [Cp(CO)_2Fe]_3Sn-OH (1)$, welches vollständig, strukturanalytisch charaktensiert wurde. Im Festkörper ist 1 monomer und besitzt eine unverbrückte Hydroxogruppe mit einem Sn-O-Abstand von 2.017(7)Å. NMR-Untersuchungen belegen einen schnellen Austausch der Wasserstöfatome der Hydroxogruppe. Durch die Umsetzung von Sn₉⁴⁻ mit elementarem Tellur konnte das Anion $[Te_2Sn(\mu_2-Te)_2SnTe_2]^4$ (2a) und bei Zusatz von Me₃NO das Anion $[Sn(\mu_2-Te)_3Sn]^{2^-}$ (3a) dargestellt werden. Die Röntgenstrukturanalyse von K₂[K-(2,2,2-crypt)]₂Sn₂Te₆ · len zeigt, daß für 2a ein zu Diboran analoger Bau vorliegt. Sämtliche Verbindungen wurden ¹H-, ¹³C-, ¹¹⁹Sn- und ¹²⁵Te-NMR-spektroskopisch charakterisiert. © 1997 Elsevier Science S.A.

Keywords: Zintl anion; X-ray analysis; NMR spectroscopic analysis

1. Einleitung

Ligandenfreie (nackte) Elementcluster der IV. Hauptgruppe sind in Form ihrer Anionen seit über 100 Jahren bekannt [1]. Durch Extraktionen von Legierungen der nominellen Zusammensetzung "A₄E₉" (A = Na, K; E = Ge, Sn, Pb) lassen sich konzentrierte Lösungen von E⁴⁻₉-Ionen (ca. 0.1 M an E⁴⁻₉ in Ethylendiamin) herstellen [2]. Diese außerordentlich luft- und feuchtigkeitsempfindlichen Lösungen wirken stark reduzierend [3], was ihre Verfügbarkeit für weitere Reaktionen einschränkt. So sind bisher nur die Umsetzungen von E_9^{4-} -Ionen mit der Übergangsmetallverbindung Cr(Mes)(CO)₃ (Mes = Mesitylen) beschrieben, welche zu den Komplexen $[E_9{Cr(CO)_3}]^{4-}$ führten (E = Sn [4], Pb [5]).

Die prinzipielle Gültigkeit des Syntheseprinzips, Hauptgruppenelement-Verbindungen durch metallorganische Gruppen zu stabilisieren, zeigt sich in vielen Beispielen mit homoatomaren Einheiten der V. Hauptgruppe [6]. Viele neutrale [7–9] und anionische [10–13] Hauptgruppenelement-Bausteine lassen sich unter Erhalt oder Veränderung ihrer Struktur in übergangsmetallorganische Cluster einbauen.

Eine andere Möglichkeit größere Hauptgruppenelement-Bausteine herzustellen besteht im Aufbau über

^{*} Corresponding author. Fax: (+41) 1 632 1149; e-mail: faessler@inorg.chem.ethz.ch.

Herrn Professor G. Huttner zum 60. Geburtstag gewidmet.

 $^{^{2}}$ 2,2,2-crypt = Kryptofix = 4,7,13,16,21,24-Hexaoxa-1.10-diazobicyclo-(8.8.8)hexacosan, en = Ethylendiamin.

⁰⁰²²⁻³²⁸X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. PII \$0022-328X(97)00070-3

monomere Einheiten. Dabei erscheint es vorteilhaft. wenn die Hauptgruppenelemente bereits an eines oder mehrere übergangsmetallorganische Fragmente koordiniert sind [14-16]. Schöne Beispiele aus dem Bereich der IV. Hauptgruppe, die zum Aufbau von Käfigmolekülen führten, sind die Synthese von $[Sn_{6}(Cr(CO)_{5})_{6}]^{2-}$ aus SnCl₂ und $[Cr(CO)_{5}]^{2-}$ [15], oder die Darstellung von gemischten Hauptgruppenelement-Einheiten wie Thiostannat(II)- bzw. Zinnoxidhydrat-Komplexen aus $[Cp^{*}(CO)_{2}Mn]_{2}Sn$ und S^{2-} bzw. O₂ [16]. Der schrittweise Aufbau von gemischten Hauptgruppenelement-Verbindungen ist für den Fall der Einschiebungsreaktionen von Telluratomen in homonucleare Bindungen von Elementorganylen der IV. Hauptgruppe weitaus besser untersucht [17–19]. Nach unserem Wissen sind jedoch bisher keine erfolgreichen Umsetzungen von E₉⁴⁻-Ionen mit Chalkogenen beschrieben worden.

In diesem Zusammenhang und im Rahmen unserer Untersuchungen zur Struktur, Eigenschaft und Reaktivität nackter Hauptgruppenelementcluster [20–22] haben wir nun auch Reaktionen des Zintl-Ions Sn_{9}^{4-} mit metallorganischen Reagenzien, sowie mit Hauptgruppenelement-Verbindungen untersucht und berichten hier über die Ergebnisse der Umsetzung von Sn_{9}^{4-} mit CpFe(CO)₂I und den Umsetzungen mit elementarem Tellur.

2. Synthese und Röntgenstrukturanalyse von [Cp(CO), Fe]₃Sn-OH (1)

Bei der Umsetzung einer en-Lösung von Sn_9^{4-} mit $Cp(CO)_2$ FeI in Toluol erhält man aus der rotbraunen Reaktionslösung zunächst hellgelbe Kristalle, ³ die bisher nicht weiter charakterisiert werden konnten (vgl. Schema 1). Aus der überstehenden Lösung scheiden sich nach mehreren Tagen dunkelrote Kristalle der Verbindung 1 ab. Im IR-Spektrum wird neben den für

unverbrückte Carbonylliganden typischen Streckschwingungen eine Absorption bei 3617 cm⁻¹ beobachtet. Die Bande deutet auf das Vorliegen von unverbrückten Hydroxogruppen hin, die direkt an ein Metallzentrum gebunden sind [23].

Zur Klärung der Struktur von 1 wurde eine Einkristallröntgenstrukturanalyse durchgeführt. Die kristallographischen Daten sind in den Tabellen 1-3 wiedergegeben. Wie Abb. 1 zeigt liegen molekulare Einheiten vor, in denen das Zinn verzerrt tetraedrisch von drei [Cp(CO)₂Fe]-Einheiten und einer Hydroxogruppe umgeben ist. Die Fe-Sn Abstände sind nahezu gleich (2.612(2) bis 2.615(2) Å) und liegen im Abstandsbereich, der typisch für vierfach koordinierte Zinnverbindungen mit [Cp(CO), Fe]-Einheiten als Liganden ist (vgl. z.B. [Cp(CO), Fe]SnCl, 2.467(2) Å und $[Cp(CQ)_2Fe]_2SnMe_2$ 2.605(5) Å [24]). Das Molekül besitzt C_1 -Symmetrie. Die drei Winkel Fe-Sn-Fe liegen zwischen 114.34° und 117.29°, so daß die Eisenatome und das Zinnatom eine nur leicht verzerrte trigonale Pyramide bilden. Der Sn-O1 Abstand liegt mit 2.017(7) Å ebenfalls im Bereich anderer experimentell bestimmter Sn–O-Abstände (siehe z.B. (^tBu₂FSn)₂(μ_2 -OH), 2.012 bzw. 2.194 Å [25]). Der Sn-O-Kontakt ist jedoch länger als in Mes₃SnOH (1.999(6)Å), in welchem die Hydroxogruppe ebenfalls unverbrückt auftritt und das Zinnatom nur vierfach koordiniert ist [23]. Das Sauerstoffatom O1 ist dem Fe1-Atom zugeneigt (Fe1-Sn-O 98.7° gegenüber Fe2-Sn-O 104.3° bzw. Fe3-Sn-O 104.0°) und liegt gestaffelt mit den beiden Carbonylliganden des Fel vor. Die Lagen der Wasserstoffatome konnten nicht aus der Differenzfourieranalyse entnommen werden und wurden mit idealisierten Abständen rechnerisch bestimmt.

Neben dem Infrarotspektrum belegt auch das ¹H-NMR-Spektrum die Existenz einer Hydroxogruppe. Das ¹H-NMR-Spektrum von **1** weist zwei Signale auf, je ein Singulett, welches den Cyclopentadienylliganden (4.48 ppm) und der Hydroxogruppe (0.63 ppm) zugewiesen werden können. Bei Temperaturerniedrigung findet eine Verbreiterung des Signals bei höherem Feld statt, bis es schließlich bei -60 °C vollständig verschwindet. Nach kurzer Zeit tritt auch bei tiefer Temperatur ein zweites Signal geringer Intensität im Bereich der Cp-Liganden auf (4.67 ppm). Dieses Signal bleibt bei anschließender Temperaturerhöhung erhalten und deutet auf eine Zersetzung von **1** hin, die auch durch die Bildung eines Niederschlags (nach ca. einer

³ Monoklin C, a = 9.480(2), b = 12.190(2), c = 8.630(2) Å, $\beta = 98.58^{\circ}(2)$. NMR-Spektren (D₈-Toluol): ¹H 3.46 ppm, ¹³C 44.6 ppm.

271

Tabelle 1						
Daten zur	Kristallstrukturanalyse	von	1	und	2	a

	1	2	
Kristallfarbe	rot	rot	
Kristallabmessungen	$0.2 \times 0.3 \times 0.1$	$0.4 \times 0.2 \times 0.2$	
Summenformel	$C_{21}H_{14}Fe_2O_7Sn$	$C_{10}H_{40}K_{2}N_{2}O_{2}SnTe_{2}$	
Kristallsystem	monoklin	triklin	
Gitterkonstanten (Å.°)	a = 15.610(2)	$a = 10.514(2), \alpha = 88.06(3)$	
	$b = 9.588(1), \beta = 111.15(1)$	b = 10.966(2), B = 85.30(3)	
	c = 16.292(2)	$c = 14.310(3), \gamma = 84.02(3)$	
Volumen (Å ³)	2274.1(5)	1634.9(6)	
Raumgruppe	$P2_1/n$	PĪ	
Formeleinheiten pro Zelle	4	2	
Temperatur (K)	293	123	
$\rho_{\text{berechnet}} (\text{g cm}^{-3})$	1.947	2.003	
Absorptionskoeff μ (mm ⁻¹)	3.001	3.693	
F(000)	1304	934	
Datensammlung	STOE IPDS (Graphit-Monochromator, Mo _{K a})	
Bildplattenabstand (mm)	80	80	
φ -Bereich, $\Delta \varphi$	0-135°, 1.5°	0–270°, 2.0°	
Anzahl der Bildaufnahmen (Belichtungsdauer)	90 (20 min)	97 (20 min)	
θ -Bereich (°)	3.92 bis 24.15	3.97 bis 23.98	
Index-Bereich	$-17 \le h \le 17$	$-11 \le h \le 11$	
	$-10 \le k \le 11$	$-12 \le k \le 12$	
	$-18 \le l \le 18$	$-16 \le l \le 16$	
Gemessene Reflexe	12522	9239	
Unabhängige Reflexe (R _{int.})	3569 (0.060)	4619 (0.074)	
Unabhängige Reflexe	2961; $I > 2\sigma(I)$	3460; $I > 3\sigma(1)$	
Absorptionkorrektur	DECAY 1 (STOE IPDS)		
Strukturlösung, Verfeinerung	SI	helxs-86, shelxl-93	
	volle Ma	trix, kleinste Fehlerquadrate	
Anzahl verfeinerter Parameter	290	308	
Maximale/Mittlere Verschiebung	-0.031/0.001	0.022/0.002	
Restelektronendichte ($e^{-} Å^{-3}$)	1.110 und -0.621	1.202 und -1.473	
R ₁ ^b	0.051	0.057	
$wR_2(F^2)^{b}$	0.135	0.155	
Gewichtungsschema für $wR_2(a,b)$	0.0245; 23.4850	0.0719; 22.3682	
'Goodnes of fit'	1.223	1.140	

^a Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern CSD-406394(1), --406393(2), der Autoren und des Zeitschriftenzitats angefordert werden. ^b $R_1 = \sum (F_0 - F_c) / \sum F_0$, $R_w = \{ [\sum w (F_0^2 - F_c^2)^2] / \sum w F_0^4 \}^{1/2}$, $w = [\sigma^2 (F_0^2) + (aP)^2 + bP]^{-1}$, $P = (F_0^2 + 2F_c^2) / 3$.

Stunde) erkennbar wird. Das ¹³C-NMR-Spektrum zeigt zwei Signale, eines für die Carbonylliganden bei 215.9 ppm und eines bei 83.2 ppm für die Cp-Gruppen. Im ¹¹⁹Sn-NMR-Spektrum wird zunächst ein Signal bei 1546.4 ppm beobachtet. Nach einigen Stunden tritt ebenfalls ein weiteres Signal auf, welches wir dem Zersetzungsprodukt zuweisen. Die Signale zeigen keine ¹³C-Satelliten.

3. Synthese der Anionen $\operatorname{Sn}_2 \operatorname{Te}_6^{4-}$ und $\operatorname{Sn}_2 \operatorname{Te}_3^{2-}$. Kristallstrukturanalyse von $\operatorname{K}_2[\operatorname{K}-(2,2,2\operatorname{-crypt})]_2\operatorname{Sn}_2\operatorname{Te}_6$ (3)

Die Umsetzung von Sn_9^{4-} mit elementarem Tellur in en liefert das Zintl-Ion $[\operatorname{Te}_2\operatorname{Sn}(\mu_2\operatorname{-}\operatorname{Te})_2\operatorname{SnTe}_2]^{4-}$ (2a) und bei Zusatz von Me₃NO das Anion $[\operatorname{Sn}(\mu_2\operatorname{-}$

Te)₃Sn]²⁻ (3a). Die Ionen konnten als $K_{2}[K-(2,2,2 (rypt)_{1}^{2}$ (2) bzw. $[K-(2,2,2-crypt)]_{2}$ -Salz (3) isoliert werden (vgl. Schema 2 und Abbn. 2 und 3).

Über ein Salz der gleichen Zusammensetzung wie 2 wurde vor kurzem berichtet [26], doch weisen die Einkristalle von 2 abweichende Gitterkonstanten auf, was auf eine andere Anordnung im Kristall schließen ließ. Da die früher durchgeführte Kristallstrukturanalyse zudem auf Grund von Fehlordnungen nur ungenügend verfeinert werden konnte, wurde die Kristallstruktur von 2 erneut bestimmt. Die Röntgenstrukturanalyse von 2 (Abbn. 2 und 3, Tabelle 1, 4 und 5) belegt für das Anion 2a dieselbe Struktur wie sie auch in $(R_4N)_4 \cdot 2a$ (R = Me [27], R = Et [28]) und bei anderen Anionen des Typs $E_2 X_6^{4-}$ (E = Ge, X = S [29], Se [30]; E = Sn, X = S [31], Se [32,33]) beobachtet werden. Die Strukturen der Anionen können als zwei kantenverknüpfte,

Tabelle 2 Ausgewählte Bindungslängen (Å) und -winkel (°) für 1

Sn1-01	2.017(7)	Fe3-C31	1.73(2)
Sn1-Fe1	2.615(2)	Fe3-C32	1.75(1)
Sn1-Fe2	2.614(2)	C11-011	1.18(1)
Sn1-Fe3	2.612(2)	C12-O12	1.17(2)
Fe1-C11	1.70(1)	C21-O21	1.16(2)
Fe1-C12	1.73(1)	C22-O22	1.16(2)
Fe2-C21	1.71(2)	C31-O31	1.15(2)
Fe2-C22	1.73(2)	C32-O32	1.16(2)
O1-Sn1-Fe1	98.7(2)	C21-Fe2-C22	92.1(7)
O1-Sn1-Fe2	104.3(2)	C31-Fe3-C32	95.0(7)
O1-Sn1-Fe3	104.0(2)	C201-Fe2-Sn1	139.1(9)
Fe2-Sn1-Fe1	114.34(5)	C202-Fe2-Sn1	145.5(7)
Fe3-Sn1-Fe1	117.29(6)	C203-Fe2-Sn1	107.9(5)
Fe3-Sn1-Fe2	115.04(6)	C204-Fe2-Sn1	85.3(4)
C11-Fe1-Sn1	84.3(4)	C205-Fe2-Sn1	99.5(6)
C12-Fe1-Sn1	85.3(4)	011-C11-Fel	176.7(11)
C21-Fe2-Sn1	89.3(4)	O12-C12-Fe1	176.5(11)
C22-Fe2-Sn1	92.9(4)	O21-C21-Fe2	177.6(12)
C31-Fe3-Sn1	90.2(5)	O22-C22-Fe2	176.7(13)
C32-Fe3-Sn1	85.6(4)	O31-C31-Fe3	177.2(13)
C11-Fe1-C12	94.1(6)	O32-C32-Fe3	178.2(12)

Tabelle 3		
Atomkoordinaten ($\times 10^4$) und äquivalente iso	otrope Auslenkungspa	a-
rameter ($\mathring{A}^2 \times 10^3$) für 1		

Atom	x	у		U _{eq}
Snl	1832(1)	424(1)	9690(1)	35(1)
01	852(5)	- 627(8)	9969(5)	58(2)
Fel	1109(1)	320(2)	7972(1)	45(1)
Fe2	3308(1)	- 1098(2)	10380(1)	53(1)
Fe3	1886(1)	2854(2)	10432(1)	53(1)
C101	2150(8)	1635(13)	7883(7)	57(3)
C102	1270(9)	2229(15)	7425(10)	76(4)
C103	779(9)	1279(17)	6746(8)	74(4)
C104	1332(10)	178(17)	6786(8)	79(4)
C105	2181(8)	369(14)	7481(8)	66(3)
C11	106(8)	670(14)	8124(7)	60(3)
011	- 591(6)	973(13)	8208(6)	98(4)
C12	1041(9)	- 1460(15)	8114(7)	65(3)
012	969(8)	- 2666(10)	8163(7)	97(3)
C201	3784(17)	- 2689(20)	11277(14)	148(11)
C202	3861(15)	- 3060(21)	10464(20)	148(9)
C203	3004(12)	-3128(17)	9862(12)	97(5)
C204	2390(10)	-2767(12)	10231(9)	72(4)
C205	2841(16)	- 2474(16)	11101(10)	110(6)
C21	3724(8)	-438(18)	9624(9)	76(4)
O21	4033(6)	33(16)	9134(7)	117(5)
C22	3861(9)	167(17)	11141(9)	79(4)
O22	4264(7)	970(12)	11676(8)	115(4)
C301	1857(10)	1727(15)	11517(8)	71(4)
C302	2220(11)	3995(16)	11614(9)	79(4)
C303	2551(10)	2638(17)	11787(8)	77(4)
C304	1058(10)	2409(19)	11148(9)	85(5)
C305	1294(14)	3878(19)	11215(10)	104(6)
C31	1107(11)	3508(16)	9457(10)	86(4)
O31	577(10)	3983(14)	8828(8)	145(6)
C32	2853(10)	3171(13)	10158(8)	65(3)
O32	3508(7)	3390(11)	10000(7)	91(3)

Abb. 1. Struktur von [Cp(CO)₂Fe]Sn-OH (1).

Abb. 2. Struktur des Anions Sn_2Te (2a) mit koordinierenden Kaliumionen. Auslenkungsellipsoide mit 50% Wahrscheinlichkeit.

Abb. 3. Ausschnitt aus der Struktur von $K_2[K-(2,2,2-crypt)]_2 Sn_2Te_6$ (2) entlang der *b*-Achse mit verbrückenden Ethylendiaminmolekülen.

Tab

verzerrte EX₄-Tetraeder mit zwei verbrückenden und vier terminalen X-Atomen aufgefaßt werden. In der Struktur von 2 besitzt der Sn₂Te₂-Vierring ein kristallographisches Inversionszentrum in der Ringmitte. Je zwei terminale und ein verbrückendes Telluratom weisen kurze Abstände zu einem Kaliumatom K2 auf. Die K2-Te-Abstände liegen im Bereich von 3.546(4) bis 3.787(4) Å und streuen somit um dem Mittelwert, der auch in der Zintlphase $K_6[Sn_2Te_6]$ gefunden wird (Abstandsbereich 3.42 bis 3.94 Å) [34]. Im Unterschied zu der früher bestimmten Modifikation von 2 ist das Kaliumatom zusätzlich an das Stickstoffatom eines Ethylendiaminmoleküls koordiniert (K2-N20 2.85(1)Å). Die C-Atome des Ethylendiaminmoleküls sind symmetrisch um ein kristallographisches Symmetriezentrum angeordnet, so daß das Lösungsmittelmolekül als Brücke zwischen zwei K2-Atomen fungiert und sich im Kristall entlang der b-Richtung eine eindimensionale Kette $(\cdots K^+ \cdots NH_2(CH_2)_2H_2N\cdots K^+ \cdots Te_2SnTe_2$ - $SnTe_2^{4-}\cdots)_n$ ausbildet (Abb. 3). Die weitere Koordination von K2 an ein Sauerstoffatom des Kryptofixmoleküls (K2-O4 2.80(1)Å) liegt im Abstandsbereich der üblicherweise zwischen K⁺-Ionen und O-Atomen in [K-(2,2,2-cryp]-Einheiten beobachtet wird. (vgl. z. B. $K_{1-O} 2.71(1) \hat{A} \text{ bis } 2.88(1) \hat{A}$.

Im ¹H-NMR-Spektrum von 2 sind wie erwartet drei Singulett-Signale für das Kryptofix zu beobachten. Ein breites Signal bei 1.36 ppm ist der NH₂-Gruppe der im Kristall eingeschlossenen Ethylendiaminmoleküle zuzuordnen, das Signal für die CH₂-Gruppen ist von den Signalen des Lösungsmittels und den Signalen des Kryptofixmoleküls verdeckt. Im ¹³C-NMR-Spektrum werden die entsprechenden Signale des Kryptofix und des Ethylendiamins beobachtet. Das ¹¹⁹Sn-NMR-Spektrum weist in D_7 -DMF (Dimethylformamid) bei -50 °C zwei Signale auf, wovon das bei -1212.8 ppm

Tabelle 4

Ausgewählte Bindungslängen (Å) und -winkel (°) für 2

-			
Sn1-Te1	2.834(2)	Te2-K2	3.634(4)
Sn1–Te2	2.704(2)	Te3' –K2	3.546(4)
Sn1–Te3	2.704(2)	K1-K2	4.262(5)
Sn1–Te1'	2.831(2)	K1-04	3.09(1)
Sn1-K2	4.054(4)	K2-O4	2.80(1)
Sn1-K2'	4.083(4)	K2-N20	2.85(1)
Te1-K2	3.787(4)		
Tel'-Snl-Tel	92.41(5)	Te3'-K2-Te2	135.9(1)
Te2-Sn1-Te1	111.46(5)	Te1-K2-Sn1	42.20(5)
Te3-Sn1-Te1	108.36(5)	Te2-K2-Sn1	40.74(4)
Te3-Sn1-Te2	119.22(5)	Te3'-K2-Sn1	97.67(9)
Te3–Sn1–K2′	169.81(6)	Te3' –K2–Sn1'	40.75(5)
K2-Sn1-K2'	122.40(6)	Te2–K2–Snl'	97.90(9)
Snl'-Te1-Sn1	87.58(5)	Te1-K2-Sn1'	41.95(5)
Sn1'-Te1-K2	74.63(6)	Sn1-K2-Sn1'	57.60(6)
Te2-K2-Tel	76.13(8)	Sn1-K2-K1	154.2(1)
Te3' K2 Te1	76.53(8)	Sn1'-K2-K1	124.5(1)

elle 5		
nkoordinaten	$(\times 10^4)$	1

Atomkoordinaten $(\times 10^{-})$	und	aquivalente	isotrope	Auslenkungspa-
rameter ($\text{\AA}^2 \times 10^3$) für 2		-	•	01

Atom	<u>x</u>	У	z	$U_{\rm eq}$
Snl	4063(1)	4581(1)	1189(1)	36(1)
Tel	3415(1)	6076(1)	- 390(1)	39(1)
Te2	2681(1)	2629(1)	1381(1)	42(1)
Te3	4108(1)	6045(1)	2666(1)	46(1)
K1	1314(3)	2064(3)	6570(2)	40(1)
K2	3446(3)	2794(3)	8860(2)	47(1)
N20	4450(13)	9052(13)	1020(9)	50(3)
C20	4488(14)	9585(14)	64(10)	40(3)
NI	2678(13)	3335(13)	5012(10)	52(3)
N2	-13(11)	849(12)	8215(8)	41(3)
01	81(9)	2526(10)	4870(6)	42(2)
O2	- 951(9)	973(9)	6270(6)	41(2)
O3	1615(11)	4467(11)	6752(9)	62(3)
O4	872(10)	3318(10)	8484(7)	49(3)
O5	3836(9)	1031(10)	5896(7)	44(3)
06	2715(10)	199(10)	7657(8)	48(3)
C1	1768(15)	3667(17)	4276(12)	55(5)
C2	978(15)	2675(16)	4099(10)	46(4)
C3	-815(15)	1672(16)	4680(10)	47(4)
C4	- 1693(14)	1500(15)	5553(11)	42(4)
C5	- 1775(13)	689(15)	7107(10)	41(4)
C6	-940(14)	74(15)	7834(11)	44(4)
C7	3180(15)	4440(17)	5422(12)	56(5)
C8	2241(19)	5147(18)	6055(14)	66(5)
C9	1136(24)	5143(17)	7563(13)	74(6)
C10	313(24)	4442(22)	8139(14)	88(8)
C11	123(15)	2720(18)	9191(12)	56(5)
C12	- 725(15)	1847(18)	8802(11)	55(5)
C13	3786(15)	2508(15)	4589(11)	47(4)
C14	4611(14)	1791(15)	5319(11)	45(4)
C15	4561(15)	443(14)	6610(12)	48(4)
C16	3789(16)	-453(15)	7132(12)	52(4)
C17	1942(15)	-657(16)	8118(12)	52(4)
C18	874(14)	57(15)	8761(11)	46(4)

von zwei Satelliten umgeben ist. Diese zeigen die Kopplung der Zinnatome in **2a** mit benachbarten ¹²⁵Te-Atomen an. Im ¹²⁵Te-NMR-Spektrum von **2** beobachten wir drei Signale mit je einem Paar von ¹¹⁹Sn-Satelliten. Zwei der Signale sind den unterschiedlich gebundenen Te-Atomen in **2a** zuzuordnen, das dritte könnte von der monomeren Einheit $SnTe_3^{2-}$ herrühren. Das Gleichgewicht **2a** $\approx 2SnTe_3^{2-}$ wurde NMR-spektroskopisch auch in flüssigem Ammioniak als Lösungsmittel beobachtet [26]. Im Gegensatz zu den dort durchgeführten NMR-Untersuchungen finden wir keine weiteren Signale. Da die Signale von **2a** in DMF gegenüber denen in en und NH₃ stark verschoben sind, ist ein direkter Vergleich der chemischen Verschiebungen mit früher aufgenommenen Spektren nicht möglich.

Während Einschiebungsreaktionen von Sauerstoffatomen in das Zinn-Polyedergerüst durch Umsetzung mit Me₃NO [35] nicht zum Erfolg führten, erfolgt bei zusätzlicher Anwesenheit von Tellurpulver die Bildung des Anions **3a**. Die Einkristallstrukturanalyse von $[K-(2,2,2-crypt)]_2 Sn_2 Te_3$ (3) ⁴ zeigt, in Übereinstimmung mit einer bereits früher durchgeführten Analyse [36], das Vorliegen von fehlgeordneten $[Sn(\mu_2-Te)_3 Sn]^2$ -Anionen (vgl. Schema 2). Im Unterschied zu unserer Darstellung über Sn_9^{4-} , wurden Kristalle der Verbindung 3 in der früheren Arbeit durch Extraktion von nicht eindeutig definierten Phasengemengen nominaler Zusammensetzung $K_2 Te/SnTe$ bzw. von Legierungen $KSn_{0.53}S_{0.33}Te_{0.67}$ mit flüssigem NH₃ bzw. en und Kryptofix erhalten. Ein NMR-spektroskopischer Nachweis von **2a** in den Extraktionslösungen war dort allerdings nicht möglich.

Wir haben im Verlaufe der Untersuchungen der Verbindung **3**¹¹⁹Sn- und ¹²⁵Te-NMR-Spektren von in D_7 -DMF gelösten Kristalle aufgenommen. Das ¹¹⁹Sn-NMR-Spektrum zeigt ein Hauptsignal mit Te-Satelliten bei – 1374.4 ppm und ein schwaches Signal bei tieferem Feld. Im Vergleich zu tellurärmeren **2a** liegt das Signal von **3a** bei höherem Feld. Dieser Gang der chemischen Verschiebungen wurde auch in anderen Lösungsmitteln beobachtet [26,37]. Im ¹²⁵Te-NMR-Spektrum erhält man sechs Signale im Bereich von 398 ppm bis – 299 ppm, wobei nur das intensivste bei 288.0 ppm Sn-Satelliten aufweist und somit **3a** zugeordnet werden kann.

4. Diskussion

Die hier beschriebenen Versuche zeigen, daß das Zintl-Ion Sn_9^{4-} als Zinnquelle für den Aufbau von zinnhaltigen Übergangsmetallkomplexen und gemischten Hauptgruppenelement-Verbindungen geeignet ist.

Die Umsetzung von Sn_{9}^{4-} mit CpFe(CO)₂I führt zur gewünschten Ausbildung von Zinn-Eisen-Bindungen. Dies ist mit der Spaltung der Zinn-Zinn-Bindungen und mit dem Abbau des Zinn-Polyedergerüsts verbunden. Eine analoge Umsetzung mit dem Zintl-Ion P₇³⁻ führt zwar unter Erhalt der Struktur des Anions zu [CpFe(CO)₂]₃P₇ [10], doch stellt dies eher eine Ausnahme dar, wie andere Umsetzungen von E₇³⁻-Ionen mit metallorganischen Reagenzien belegen (E = P [10], As [38], Sb [39]).

Das Auftreten unverbrückter Hydroxogruppen an vierfach koordiniertem Zinn ist bei Zinnorganylen selten und wurde bisher nur mit den sterisch anspruchsvollen Mesitylenliganden in der Verbindung Mes_3SnOH [23] erreicht. Wie Verbindung 1 zeigt, kann die Funktion der abschirmenden Liganden auch von übergangsmetallorganischen Fragmenten übernommen werden. Die temperaturabhängigen NMR-Untersuchungen belegen einen schnellen Austausch der Protonen der Hydroxogruppe.

Die Beispiele der Umsetzungen mit Tellurpulver zeigen, daß das Zintl-Ion Sn_9^{4-} im Prinzip auch als Ausgangsverbindung zum Aufbau von gemischten, ligandenfreien Hauptgruppenelement-Verbindungen geeignet ist. Die Isolierung zweier Anion mit unterschiedlichen Zinn/Tellur-Anteilen in Abhängigkeit von den Reaktionsbedingungen zeigt, daß die schrittweise Darstellung gemischter Anionen eine Alternative zum basischen Abbau von binaren Chalkogeniden [29,40] und der Extraktion ternärer oder quarternärer Legierungen [26,28,30,36,37] ist.

5. Experimentelles

Alle Arbeiten wurden in einer Atmosphäre von nachgetrocknetem Reinstargon (BTS-Katalysator, Molekularsieb) [41] durchgeführt, die Lösungsmittel nach den üblichen Verfahren absolutiert [42] und mit Argon gesättigt. Ethylendiamin wurde über CaH₂, Toluol über Na/Benzophenon abdestilliert. Die Extraktion der erstarrten Schmelzen K₄Sn₉ wurden entsprechend einer früher beschriebenen Vorschrift durchgeführt [21].

Die NMR-Spektren wurden auf einem 300 MHz-Spektrometer der Firma Bruker (¹H-NMR 300.13 MHz, ¹³C-NMR 75.48 MHz, ¹¹⁹Sn-NMR 111.75 MHz, ¹²⁵Te-NMR 94.69 MHz), die IR-Spektren auf einem FT-IR Spectrometer Paragon 1000 der Firma Perkin Elmer aufgenommen. In den NMR-Spektren stehen positive δ -Werte (in ppm) für Tieffeldverschiebungen. Die ¹¹⁹Sn-Spektren sind auf Sn(Me)₄, die ¹²⁵Te-Spektren auf Te(Me)₂ bezogen. Die Intensitäten der IR-Absorptionen wurden abgeschätzt und durch folgende Abkürzungen charakterisiert: vs = sehr stark; s = stark; m = mittel; w = schwach; sh = Schulter; br = breit.

5.1. Umsetzung von Sn_9^{4-} mit FeCp(CO)₂I

3.6 ml (0.36 mmol) einer en-Lösung von K_4Sn_9 werden in ein Schlenkgefäß, welches mit einem Septum verschlossen ist, einpipetiert. In einem separaten Gefäß werden 0.33 g (1.086 mmol) FeCp(CO)₂I eingewogen und in Toluol aufgenommen. Die en-Lösung wird mit dieser tiefroten Toluol-Lösung überschichtet und bei Raumtemperatur gelagert. Nach 48 Stunden erhält man in einer ersten Fraktion schwach-gelbe Kristalle. Das dekantierte Lösungsmittelgemisch wird unter reduziertem Druck bis auf 1 ml eingeengt. Nach 4 Tagen erhält man in einer zweiten Fraktion dunkelrote Kristalle von **1**. Ausbeute 0.282 g (38% bezogen auf FeCp(CO)₂I).

IR-Spektrum (Nujol-Verreibung zwischen CaF₂-Platten, cm⁻¹): 3617 vw ν OH; 2020 vw(sh), 2001 vw(sh),

⁴ Trigonal. Raumgruppe $P\overline{3}c1$, a = 11.683(1), c = 21.887(3)Å, V = 2587Å³ (152 K).

1980 m(sh), 1958 s, 1932 s, 1911 w(sh); 1892 vw(sh) vCO.

NMR-Spektren in C₆D₆. ¹H-NMR (300 K): $\delta = 0.75$ (OH); $\delta = 4.55$ (Cp); ¹³C-NMR: $\delta = 83.3$ (Cp); $\delta = 216.1$ (CO); ¹¹⁹Sn-NMR: $\delta = 1622.8$; $\delta = 1946.2$ NMR-Spektren in D₈-Toluol. ¹H-NMR (310 K): $\delta = 0.63$ (OH); $\delta = 4.48$ (Cp); $\delta = 4.67$ (Cp); ¹³C-NMR (310 K): $\delta = 83.2$ (Cp); $\delta = 215.9$ (CO); ¹H-NMR (253 K): $\delta = 1.23$ (OH); $\delta = 4.45$ (Cp); $\delta = 4.66$ (Cp); ¹H-NMR (223 K): $\delta = 83.3$; $\delta = 83.6$ (Cp); $\delta = 215.6$; $\delta = 216.1$ (CO). ¹¹⁹Sn-NMR (223 K): $\delta = 1445.8$; $\delta = 1546.4$.

Elementaranalyse (M = 666.6, $C_{21}H_{16}Fe_3O_7Sn$): ber. C 37.84%, H 2.42%, Fe 25.13%, Sn 17.81%; gef. C 37.7%, H 2.4%, Fe 25.3%, Sn 18.2%.

5.2. Darstellung des Anions $Sn_2Te_6^{4-}$ durch Umsetzung von Sn_9^{4-} mit elementarem Tellur

0.12 g (0.33 mmol) Kryptofix und 0.41 g (3.21 mmol) elementares Tellur werden in einem Schlenkgefäß vorgelegt. 1.35 ml des en-Extrakts von K_4 Sn₉ wird auf das Feststoffgemenge aufpipetiert. Das Gefäß wird bei Raumtemperatur gelagert. Nach 24 Stunden filtriert man die Lösung vom ungelösten Rückstand ab und überschichtet die en-Lösung mit Toluol. Nach 2 Tagen erhält man tiefrote Kristalle von **2**. Ausbeute 0.18 g (52% bezogen auf eine 0.1 M en-Lösung von Sn₉⁴⁻).

NMR-Spektren in D_7 -DMF: ¹H-NMR (300 K): $\delta = 1.36$ (en); $\delta = 2.47$, 3.40, 3.52 (Kryptofix); ¹³C-NMR (300 K): $\delta = 46.2$ (en); $\delta = 53.8$, 67.7, 70.7 (Kryptofix); ¹¹⁹Sn-NMR (223 K): $\delta = 1212.8$; ¹ $J(^{119}Sn-^{125}Te) = 1711$ Hz; $\delta = -1299.6$. ¹²⁵Te-NMR (223 K): $\delta = 42.6$; $\delta = -11.2$; $\delta = -148.1$ ¹ $J(^{119}Sn-^{125}Te) = 2004$ Hz, 2521 Hz, 2119 Hz. Elementaranalyse (M = 1972.5, C₃₈H₈₀K₄N₆O₁₂Sn₂Te₆): ber. C 22.61%, H 3.79%, Sn 12.41%, Te 40.03%; gef. C 21.5%, H 3.9%, Sn 13.1%, Te 41.3%.

5.3. Darstellung des Anions $Sn_2Te_3^{2-}$ durch Umsetzung von Sn_9^{4-} mit elementarem Tellur und Me₃NO

0.108 g (0.846 mmol) Tellur, 0.018 g (0.24 mmol) Me₃NO und 0.094 g (0.25 mmol) Kryptofix werden ohne Lösungsmittel in einem Schlenkgefaß vorgelegt. 0.21 ml des en-Extrakts von K₄Sn₉ wird auf das Feststoffgemisch aufpipettiert und anschließend 14 Stunden bei Raumtemperatur gelagert. Man filtriert den Rückstand ab und überschichtet die intensiv rote Lösung mit 1 ml Toluol. Nach 18 Stunden bei 23 °C erhält man wenig hellrote quaderförmige Kristalle von **3**. Ausbeute 0.04 g (14% bezogen auf eine 0.1 M en-Lösung von Sn₉⁴⁻). NMR-Spektren in D_7 -DMF: ¹H-NMR (300 K): $\delta = 2.59$, 3.59, 3.62 (Kryptofix); ¹³C-NMR (300 K): $\delta = -770.7$; $\delta = -1374.4$ ¹J(¹¹⁹Sn-NMR (223 K): $\delta = -770.7$; $\delta = -1374.4$ ¹J(¹¹⁹Sn-¹²⁵Te) = 624 Hz;

¹²⁵Te-NMR (223 K): $\delta = 398.7$; $\delta = 288.0$; $\delta = 120.5$; $\delta = -196.5$; $\delta = -257.6$; $\delta = -299.8$. Elementaranalyse (M = 1451.4, $C_{36}H_{72}K_2N_4O_{12}Sn_2Te_3$): ber. Sn 16.36%, Te 26.38%; gef. Sn 15.1%, Te 25.8%.

Dank

Wir danken der Eidgenössischen Technischen Hochschule Zürich für die finanzielle Unterstützung.

Literaturverzeichnis

- [1] A. Joannis, C.R. Acad. Sci. 113 (1891) 795.
- [2] E. Zintl, A. Harder, Z. Phys. Chem. 154 (1931) 47.
- [3] K. Plößl, Dissertation, Universität Heidelberg, 1983.
- [4] B.W. Eichhorn, R.C. Haushalter, J. Am. Chem. Soc. 110 (1988) 870.
- [5] B.W. Eichhorn, R.C. Haushalter, J. Chem. Soc. Chem. Commun. (1990) 937.
- [6] O.J. Scherer, Comments Inorg. Chem. 6 (1987) 1.
- [7] A. Foust, M.S. Forster, L.F. Dahl, J. Am. Chem. Soc. 91 (1969) 5631.
- [8] M.E. Barr, B.R. Adams, R.R. Weller, L.F. Dahl, J. Am. Chem. Soc. 113 (1991) 3052.
- [9] O.J. Scherer, T. Brück, Angew. Chem. 99 (1987) 59; Angew. Chem. Int. Ed. Engl. 26 (1987) 59.
- [10] R. Ahlrichs, D. Fenske, K. Fromm, H. Krautscheid, U. Krautscheid, O. Treutler, Chem. Eur. J. 2 (1996) 238.
- [11] G. Fritz, H.W. Schneider, W. Hönle, H.G. von Schnering, Z. anorg. allg. Chem. 584 (1990) 21; Z. anorg. allg. Chem. 585 (1990) 51.
- [12] G. Fritz, K.D. Hoppe, W. Hönle, D. Weber, D. Mujica, V. Manriquez, H.G. von Schnering, J. Organomet. Chem. 249 (1983) 63.
- [13] M. Baudler, T. Etzbach, Angew. Chem. 103 (1991) 590; Angew. Chem. Int. Ed. Engl. 30 (1991) 580.
- [14] K. Merzweiler, L. Weisse, Z. Naturforsch. Teil B: 45 (1990) 971.
- [15] B. Schiemenz, G. Huttner, Angew. Chem. 105 (1993) 295; Angew. Chem. Int. Ed. Engl. 32 (1993) 297.
- [16] B. Schiemenz, F. Ettel, G. Huttner, L. Zsolnai, J. Organomet. Chem. 458 (1993) 159.
- [17] A. Schäfer, M. Weidenbruch, W. Saak, S. Pohl, H. Marsmann, Angew. Chem. 103 (1991) 873; Angew. Chem. Int. Ed. Engl. 30 (1991) 834.
- [18] R.P.-K. Tan, G.R. Gillette, D.R. Powell, R. West, Organometallics 10 (1991) 546.
- [19] T. Tsumuraya, Y. Kabe, W. Ando, J. Chem. Soc. Chem. Commun. (1990) 1159.
- [20] T.F. Fässler, M. Hunziker, Inorg. Chem. 33 (1994) 5380.
- [21] T.F. Fässler, M. Hunziker, Z. anorg. allg. Chem. 622 (1996) 837.
- [22] T.F. Fässler, M. Hunziker, M. Spahr, Z. anorg. allg. Chem. zur Publikation eingereicht.
- [23] H. Reuter, H. Puff, J. Organomet. Chem. 379 (1989) 223.
- [24] J.A. Zubieta, J.J. Zuckeri, in: S.J. Lippard (Red.), Progress in Inorganic Chemistry, vol. 24, New York, 1978, S. 322.
- [25] H. Puff, H. Hevendehl, K. Höfer, H. Reuter, W. Schuh, J. Organomet, Chem. 287 (1985) 163.
- [26] J. Campbell, L.A. Devereux, M. Gerken, H.P.A. Mercier, A.M. Pirani, G.J. Schrobilgen, Inorg. Chem. 35 (1996) 2945.
- [27] J.C. Huffman, J.P. Haushalter, A.M. Umarji, G.K. Shenoy, R.C. Haushalter, Inorg. Chem. 23 (1984) 2312.

- [28] M.A. Ansari, J.C. Bollinger, J.A. Ibers, Inorg. Chem. 32 (1993) 231.
- [29] B. Krebs, S. Pohl, W. Schiwy, Z. anorg. allg. Chem. 393 (1972) 241.
- [30] C.-W. Park, M.A. Pell, J.A. Ibers, Inorg. Chem. 35 (1996) 4555.
- [31] R.J. Batchelor, F.W.B. Einstein, I.D. Gay, J.-H. Gu, B.M. Pinto, X.-M. Zhou, J. Am. Chem. Soc. 112 (1990) 3706.
- [32] W.S. Sheldrick, H.G. Braunbeck, Z. anorg. allg. Chem. 619 (1993) 1300.
- [33] W.S. Sheldrick, H.G. Braunbeck, Z. Naturforsch. Teil B: 44 (1989) 851.
- [34] G. Dittmar, Z. anorg. allg. Chem. 453 (1978) 68.
- [35] M.A. Edelmann, P.B. Hitchcock, M.F. Lappert, J. Chem. Soc. Chem. Commun. (1990) 1116.

- [36] M. Björgvinsson, H.P.A. Mercier, K.M. Mitchell, G.J. Schrobilgen, G. Strohe, Inorg. Chem. 32 (1993) 6046.
- [37] R.C. Bruns, L.A. Devereux, P. Granger, G.J. Schrobilgen, Inorg. Chem. 24 (1985) 2615.
- [38] B.W. Eichhorn, R.C. Haushalter, J.C. Huffmann, Angew. Chem. 101 (1989) 1081; Angew. Chem. Int. Ed. Engl. 28 (1989) 1032.
- [39] S. Charles, B.W. Eichhorn, S.G. Bott, J.Am. Chem. Soc. 115 (1993) 5837.
- [40] B. Krebs, Angew. Chem. Int. Ed. Engl. 22 (1983) 113.
- [41] M. Schütze, Angew. Chem. 70 (1958) 697.
- [42] D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of Laboratory Chemicals, Pergamon Press, New York, 2. Ausgabe, 1980.